Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 711
Filtrar
1.
Cell Rep ; 43(4): 114094, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38613784

RESUMEN

The importance of trained immunity in antitumor immunity has been increasingly recognized, but the underlying metabolic regulation mechanisms remain incompletely understood. In this study, we find that squalene epoxidase (SQLE), a key enzyme in cholesterol synthesis, is required for ß-glucan-induced trained immunity in macrophages and ensuing antitumor activity. Unexpectedly, the shunt pathway, but not the classical cholesterol synthesis pathway, catalyzed by SQLE, is required for trained immunity induction. Specifically, 24(S),25-epoxycholesterol (24(S),25-EC), the shunt pathway metabolite, activates liver X receptor and increases chromatin accessibility to evoke innate immune memory. Meanwhile, SQLE-induced reactive oxygen species accumulation stabilizes hypoxia-inducible factor 1α protein for metabolic switching into glycolysis. Hence, our findings identify 24(S),25-EC as a key metabolite for trained immunity and provide important insights into how SQLE regulates trained-immunity-mediated antitumor activity.


Asunto(s)
Ratones Endogámicos C57BL , Escualeno-Monooxigenasa , Animales , Escualeno-Monooxigenasa/metabolismo , Ratones , Colesterol/metabolismo , Colesterol/biosíntesis , Colesterol/análogos & derivados , Receptores X del Hígado/metabolismo , Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Inmunidad Innata/efectos de los fármacos , Humanos , Línea Celular Tumoral
2.
Clin Transl Med ; 14(4): e1665, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38649789

RESUMEN

BACKGROUND: White matter injury (WMI) is an important pathological process after traumatic brain injury (TBI). The correlation between white matter functions and the myeloid cells expressing triggering receptor-2 (TREM2) has been convincingly demonstrated. Moreover, a recent study revealed that microglial sterol metabolism is crucial for early remyelination after demyelinating diseases. However, the potential roles of TREM2 expression and microglial sterol metabolism in WMI after TBI have not yet been explored. METHODS: Controlled cortical injury was induced in both wild-type (WT) and TREM2 depletion (TREM2 KO) mice to simulate clinical TBI. COG1410 was used to upregulate TREM2, while PLX5622 and GSK2033 were used to deplete microglia and inhibit the liver X receptor (LXR), respectively. Immunofluorescence, Luxol fast blue staining, magnetic resonance imaging, transmission electron microscopy, and oil red O staining were employed to assess WMI after TBI. Neurological behaviour tests and electrophysiological recordings were utilized to evaluate cognitive functions following TBI. Microglial cell sorting and transcriptomic sequencing were utilized to identify alterations in microglial sterol metabolism-related genes, while western blot was conducted to validate the findings. RESULTS: TREM2 expressed highest at 3 days post-TBI and was predominantly localized to microglial cells within the white matter. Depletion of TREM2 worsened aberrant neurological behaviours, and this phenomenon was mediated by the exacerbation of WMI, reduced renewal of oligodendrocytes, and impaired phagocytosis ability of microglia after TBI. Subsequently, the upregulation of TREM2 alleviated WMI, promoted oligodendrocyte regeneration, and ultimately facilitated the recovery of neurological behaviours after TBI. Finally, the expression of DHCR24 increased in TREM2 KO mice after TBI. Interestingly, TREM2 inhibited DHCR24 and upregulated members of the LXR pathway. Moreover, LXR inhibition could partially reverse the effects of TREM2 upregulation on electrophysiological activities. CONCLUSIONS: We demonstrate that TREM2 has the potential to alleviate WMI following TBI, possibly through the DHCR24/LXR pathway in microglia.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Glicoproteínas de Membrana , Microglía , Receptores Inmunológicos , Sustancia Blanca , Animales , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/genética , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Microglía/metabolismo , Ratones , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Sustancia Blanca/metabolismo , Sustancia Blanca/patología , Receptores X del Hígado/metabolismo , Receptores X del Hígado/genética , Modelos Animales de Enfermedad , Masculino , Ratones Noqueados , Ratones Endogámicos C57BL
3.
Biochem Pharmacol ; 223: 116167, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38527558

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) prevalence is rising globally with no pharmacotherapies approved. Hepatic steatosis is closely associated with progression and prognosis of NAFLD. Dapagliflozin, kind of sodium-glucose cotransporter 2 (SGLT2) inhibitor, was found to improve NAFLD in clinical trials, while the underlying mechanism remains poorly elucidated. Here, we reported that dapagliflozin effectively mitigated liver injury and relieved lipid metabolism disorders in vivo. Further investigation showed that dapagliflozin markedly suppressed Liver X Receptor α (LXRα)-mediated synthesis of de novo lipids and bile acids (BAs). In AML12 cells, our results proved dapagliflozin decreased lipid contents via inhibiting the expression of LXRα and downstream liposynthesis genes. Proteosome inhibitor MG132 eliminated the effect of dapagliflozin on LXRα-mediated signaling pathway, which suggested that dapagliflozin downregulated LXRα expression through increasing LXRα degradation. Knockdown of LXRα with siRNA abolished the reduction of lipogenesis from dapagliflozin treatment, indicating that LXRα might be the pivotal target for dapagliflozin to exhibit the aforementioned benefits. Furthermore, the data showed that dapagliflozin reversed gut dysbiosis induced by BAs disruption and altered gut microbiota profile to reduce intestinal lipids absorption. Together, our study deciphered a novel mechanism by which dapagliflozin relieved hepatic steatosis and highlighted the potential benefit of dapagliflozin in treating NAFLD.


Asunto(s)
Compuestos de Bencidrilo , Glucósidos , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptores X del Hígado/metabolismo , Ácidos y Sales Biliares/metabolismo , Hígado/metabolismo , Lípidos/farmacología
4.
Mol Metab ; 82: 101913, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38458567

RESUMEN

OBJECTIVE: Adipose tissue mass is maintained by a balance between lipolysis and lipid storage. The contribution of adipose tissue lipogenesis to fat mass, especially in the setting of high-fat feeding, is considered minor. Here we investigated the effect of adipose-specific inactivation of the peroxisomal lipid synthetic protein PexRAP on fatty acid synthase (FASN)-mediated lipogenesis and its impact on adiposity and metabolic homeostasis. METHODS: To explore the role of PexRAP in adipose tissue, we metabolically phenotyped mice with adipose-specific knockout of PexRAP. Bulk RNA sequencing was used to determine transcriptomic responses to PexRAP deletion and 14C-malonyl CoA allowed us to measure de novo lipogenic activity in adipose tissue of these mice. In vitro cell culture models were used to elucidate the mechanism of cellular responses to PexRAP deletion. RESULTS: Adipose-specific PexRAP deletion promoted diet-induced obesity and insulin resistance through activation of de novo lipogenesis. Mechanistically, PexRAP inactivation inhibited the flux of carbons to ethanolamine plasmalogens. This increased the nuclear PC/PE ratio and promoted cholesterol mislocalization, resulting in activation of liver X receptor (LXR), a nuclear receptor known to be activated by increased intracellular cholesterol. LXR activation led to increased expression of the phospholipid remodeling enzyme LPCAT3 and induced FASN-mediated lipogenesis, which promoted diet-induced obesity and insulin resistance. CONCLUSIONS: These studies reveal an unexpected role for peroxisome-derived lipids in regulating LXR-dependent lipogenesis and suggest that activation of lipogenesis, combined with dietary lipid overload, exacerbates obesity and metabolic dysregulation.


Asunto(s)
Resistencia a la Insulina , Lipogénesis , Animales , Ratones , 1-Acilglicerofosfocolina O-Aciltransferasa/metabolismo , Tejido Adiposo/metabolismo , Colesterol/metabolismo , Grasas de la Dieta/metabolismo , Lipogénesis/genética , Receptores X del Hígado/metabolismo , Ratones Noqueados , Obesidad/metabolismo
5.
Cell Rep ; 43(3): 113946, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38483902

RESUMEN

The mechanisms by which genomic risks contribute to the onset of neuropsychiatric conditions remain a key challenge and a prerequisite for successful development of effective therapies. 15q11.2 copy number variation (CNV) containing the CYFIP1 gene is associated with autism and schizophrenia. Using stem cell models, we show that 15q11.2 deletion (15q11.2del) and CYFIP1 loss of function (CYFIP1-LoF) lead to premature neuronal differentiation, while CYFIP1 gain of function (CYFIP1-GoF) favors neural progenitor maintenance. CYFIP1 dosage changes led to dysregulated cholesterol metabolism and altered levels of 24S,25-epoxycholesterol, which can mimic the 15q11.2del and CYFIP1-LoF phenotypes by promoting cortical neuronal differentiation and can restore the impaired neuronal differentiation of CYFIP1-GoF neural progenitors. Moreover, the neurogenic activity of 24S,25-epoxycholesterol is lost following genetic deletion of liver X receptor (LXRß), while compound deletion of LXRß in CYFIP1-/- background rescued their premature neurogenesis. This work delineates LXR-mediated oxysterol regulation of neurogenesis as a pathological mechanism in neural cells carrying 15q11.2 CNV and provides a potential target for therapeutic strategies for associated disorders.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Trastorno Autístico , Humanos , Receptores X del Hígado/genética , Receptores X del Hígado/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Variaciones en el Número de Copia de ADN , Trastorno Autístico/genética , Células Madre/metabolismo , Neurogénesis
6.
Exp Lung Res ; 50(1): 53-64, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38509754

RESUMEN

OBJECTIVE: The aim of this study is to assess the impact of Liver X receptors (LXRs) on airway inflammation, airway remodeling, and lipid deposition induced by cigarette smoke and lipopolysaccharide (LPS) exposure in the lung. METHODS: Wild mice and LXR-deficient mice were exposed to cigarette smoke and LPS to induce airway inflammation and remodeling. In addition, some wild mice received intraperitoneal treatment with the LXR agonist GW3965 before exposure to cigarette smoke and LPS. Lung tissue and bronchoalveolar lavage fluid were collected to evaluate airway inflammation, airway remodeling and lipid deposition. RESULTS: Exposure to cigarette smoke and LPS resulted in airway inflammation, emphysema and lipid accumulation in wild mice. These mice also exhibited downregulated LXRα and ABCA1 in the lung. Treatment with GW3965 mitigated inflammation, remodeling and lipid deposition, while the deletion of LXRs exacerbated these effects. Furthermore, GW3965 treatment following exposure to cigarette smoke and LPS increased LXRα and ABCA1 expression and attenuated MyD88 expression in wild mice. CONCLUSION: LXRs demonstrate the potential to mitigate cigarette smoke and LPS- induced airway inflammation, emphysema and lipid disposition in mice.


Asunto(s)
Benzoatos , Bencilaminas , Fumar Cigarrillos , Enfisema , Enfisema Pulmonar , Animales , Ratones , Remodelación de las Vías Aéreas (Respiratorias) , Líquido del Lavado Bronquioalveolar , Fumar Cigarrillos/efectos adversos , Enfisema/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Receptores X del Hígado/metabolismo , Pulmón/metabolismo , Ratones Endogámicos C57BL
7.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(3): 159466, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38369253

RESUMEN

Maintaining the homeostasis of the placental vasculature is of paramount importance for ensuring normal fetal growth and development. Any disruption in this balance can lead to perinatal morbidity. Several studies have uncovered an association between high levels of oxidized cholesterol (oxysterols), and complications during pregnancy, including gestational diabetes mellitus (GDM) and preeclampsia (PE). These complications often coincide with disturbances in placental vascular function. Here, we investigate the role of two oxysterols (7-ketocholesterol, 7ß-hydroxycholesterol) in (dys)function of primary fetoplacental endothelial cells (fpEC). Our findings reveal that oxysterols exert a disruptive influence on fpEC function by elevating the production of reactive oxygen species (ROS) and interfering with mitochondrial transmembrane potential, leading to its depolarization. Moreover, oxysterol-treated fpEC exhibited alterations in intracellular calcium (Ca2+) levels, resulting in the reorganization of cell junctions and a corresponding increase in membrane stiffness and vascular permeability. Additionally, we observed an enhanced adhesion of THP-1 monocytes to fpEC following oxysterol treatment. We explored the influence of activating the Liver X Receptor (LXR) with the synthetic agonist T0901317 (TO) on oxysterol-induced endothelial dysfunction in fpEC. Our results demonstrate that LXR activation effectively reversed oxysterol-induced ROS generation, monocyte adhesion, and cell junction permeability in fpEC. Although the effects on mitochondrial depolarization and calcium mobilization did not reach statistical significance, a strong trend towards stabilization of calcium mobilization was evident in LXR-activated cells. Taken together, our results suggest that high levels of systemic oxysterols link to placental vascular dysfunction and LXR agonists may alleviate their impact on fetoplacental vasculature.


Asunto(s)
Oxiesteroles , Embarazo , Femenino , Humanos , Oxiesteroles/metabolismo , Placenta/metabolismo , Receptores X del Hígado/metabolismo , Células Endoteliales/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Calcio/metabolismo
8.
J Nat Prod ; 87(2): 322-331, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38334086

RESUMEN

A strategy integrating in silico molecular docking with LXRα and phenotypic assays was adopted to discover anti-hypercholesterolemia agents in a small library containing 205 marine microorganism-derived natural products, collected by our group in recent years. Two fumitremorgin derivatives, 12R,13S-dihydroxyfumitremorgin C (1) and tryprostatin A (3), were identified as potential LXRα agonists, by real-time qPCR and Western blot (WB) analysis, together with a surface plasmon resonance (SPR) assay. The anti-hypercholesterolemic effects of 1 and 3, together with their mechanisms, were investigated in depth using different cell and mouse models, among which the study of LXRα is of crucial importance. Compound 1 or 3 exhibited the capacity to effectively reverse excessive lipid accumulation in a hepatic steatosis cell model and significantly reduce liver damage and blood cholesterol levels in high cholesterol diet (HCD)-fed wild-type mice, whereas those beneficial effects were completely nullified in HCD-fed LXRα-knockout mice. Furthermore, 1 and 3 outperformed common LXRα agonists by suppressing the expression of sterol regulatory element-binding protein 1 (SREBP1) in HCD-fed mice, mitigating lipotoxicity. Thus, this study highlights the discovery of two marine microorganism-derived anti-hypercholesterolemia agents targeting LXRα.


Asunto(s)
Hipercolesterolemia , Receptores Nucleares Huérfanos , Animales , Ratones , Colesterol/metabolismo , Hipercolesterolemia/tratamiento farmacológico , Hígado , Receptores X del Hígado/metabolismo , Ratones Noqueados , Simulación del Acoplamiento Molecular , Receptores Nucleares Huérfanos/metabolismo , Receptores Nucleares Huérfanos/farmacología
9.
Gene ; 909: 148302, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38401833

RESUMEN

Changes in circulating let-7c were significantly associated with the alter in lipid profile, but its role in intracellular lipid metabolism remains unknown. This work was conducted to explore the effects of let-7c on the lipid accumulation in macrophages and uncover the underlying mechanism. Our results showed that let-7c inhibition relieved atherosclerosis progression in apoE-/- mice. In ox-LDL-treatment macrophages, let-7c knockdown suppressed lipid accumulation but does no affect cholesterol intake. Consistent with this, overexpression of let-7c promoted lipid accumulation by reducing the expression of LXRα and ABCA1/G1. Mechanistically, let-7c targeted PGC-1α to repress the expression of LXRα and ABCA1/G1, thereby regulating cholesterol homeostasis in macrophages. Taken together, these findings suggest that antagonism of let-7c reduces atherosclerosis and macrophage lipid accumulation through the PGC-1α/LXRα/ABCA1/G1 axis.


Asunto(s)
Aterosclerosis , Hipercolesterolemia , Animales , Ratones , Colesterol/metabolismo , Macrófagos/metabolismo , Aterosclerosis/genética , Aterosclerosis/metabolismo , Hipercolesterolemia/metabolismo , Metabolismo de los Lípidos/genética , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Receptores X del Hígado/genética , Receptores X del Hígado/metabolismo
10.
Biochem Pharmacol ; 222: 116096, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38423188

RESUMEN

Calcium channel blockers (CCBs) are commonly used as antihypertensive agents. While certain L-type CCBs exhibit antiatherogenic effects, the impact of Cav3.1 T-type CCBs on antiatherogenesis and lipid metabolism remains unexplored. NNC 55-0396 (NNC) is a highly selective blocker of T-type calcium channels (Cav3.1 channels). We investigated the effects of NNC on relevant molecules and molecular mechanisms in human THP-1 macrophages. Cholesterol efflux, an indicator of reverse cholesterol transport (RCT) efficiency, was assessed using [3H]-labeled cholesterol. In vivo, high cholesterol diet (HCD)-fed LDL receptor knockout (Ldlr-/-) mice, an atherosclerosis-prone model, underwent histochemical staining to analyze plaque burden. Treatment of THP-1 macrophages with NNC facilitated cholesterol efflux and reduced intracellular cholesterol accumulation. Pharmacological and genetic interventions demonstrated that NNC treatment or Cav3.1 knockdown significantly enhanced the protein expression of scavenger receptor B1 (SR-B1), ATP-binding cassette transporter A1 (ABCA1), ATP-binding cassette transporter G1 (ABCG1), and liver X receptor alpha (LXRα) transcription factor. Mechanistic analysis revealed that NNC activates p38 and c-Jun N-terminal kinase (JNK) phosphorylation, leading to increased expression of ABCA1, ABCG1, and LXRα-without involving the microRNA pathway. LXRα isrequired for NNC-induced ABCA1 and ABCG1 expression. Administering NNC diminished atherosclerotic lesion area and lipid deposition in HCD-fed Ldlr-/- mice. NNC's anti-atherosclerotic effects, achieved through enhanced cholesterol efflux and inhibition of lipid accumulation, suggest a promising therapeutic approach for hypertensive patients with atherosclerosis. This research highlights the potential of Cav3.1 T-type CCBs in addressing cardiovascular complications associated with hypertension.


Asunto(s)
Aterosclerosis , Bencimidazoles , Ciclopropanos , Hipercolesterolemia , Naftalenos , Humanos , Animales , Ratones , Bloqueadores de los Canales de Calcio/farmacología , Bloqueadores de los Canales de Calcio/uso terapéutico , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/prevención & control , Aterosclerosis/metabolismo , Receptores X del Hígado/metabolismo , Colesterol/metabolismo , Hipercolesterolemia/tratamiento farmacológico , Transportadoras de Casetes de Unión a ATP/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo
11.
Int J Mol Med ; 53(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38362962

RESUMEN

Phospholipids (PLs) are principle constituents of biofilms, with their fatty acyl chain composition significantly impacting the biophysical properties of membranes, thereby influencing biological processes. Recent studies have elucidated that fatty acyl chains, under the enzymatic action of lyso­phosphatidyl­choline acyltransferases (LPCATs), expedite incorporation into the sn­2 site of phosphatidyl­choline (PC), profoundly affecting pathophysiology. Accumulating evidence suggests that alterations in LPCAT activity are implicated in various diseases, including non­alcoholic fatty liver disease (NAFLD), hepatitis C, atherosclerosis and cancer. Specifically, LPCAT3 is instrumental in maintaining systemic lipid homeostasis through its roles in hepatic lipogenesis, intestinal lipid absorption and lipoprotein secretion. The liver X receptor (LXR), pivotal in lipid homeostasis, modulates cholesterol, fatty acid (FA) and PL metabolism. LXR's capacity to modify PL composition in response to cellular sterol fluctuations is a vital mechanism for protecting biofilms against lipid stress. Concurrently, LXR activation enhances LPCAT3 expression on cell membranes and elevates polyunsaturated PL levels. This activation can ameliorate saturated free FA effects in vitro or endoplasmic reticulum stress in vivo due to lipid accumulation in hepatic cells. Pharmacological interventions targeting LXR, LPCAT and membrane PL components could offer novel therapeutic directions for NAFLD management. The present review primarily focused on recent advancements in understanding the LPCAT3 signaling pathway's role in lipid metabolism related to NAFLD, aiming to identify new treatment targets for the disease.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptores X del Hígado/metabolismo , Hígado/metabolismo , Metabolismo de los Lípidos , Fosfolípidos/metabolismo , Ácidos Grasos/metabolismo , Transducción de Señal , Colina/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferasa/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferasa/farmacología
12.
J Ethnopharmacol ; 324: 117814, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38286155

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Tiaogan Daozhuo Formula (TGDZF) is a common formulation against atherosclerosis, however, there is limited understanding of its therapeutic mechanism. AIM OF THIS STUDY: To examine the effectiveness of TGDZF in the treatment of atherosclerosis and to explore its mechanisms. MATERIALS AND METHODS: In ApoE-/- mice, atherosclerosis was induced by a high-fat diet for 12 weeks and treated with TGDZF at different doses. The efficacy of TGDZF in alleviating atherosclerosis was evaluated by small animal ultrasound and histological methods. Lipid levels were measured by biochemical methods. The capacity of cholesterol efflux was tested with a cholesterol efflux assay in peritoneal macrophage, and the expression of AMPKα1, PPARγ, LXRα, and ABCA1 was examined at mRNA and protein levels. Meanwhile, RAW264.7-derived macrophages were induced into foam cells by ox-LDL, and different doses of TGDZF-conducting serum were administered. Similarly, we examined differences in intracellular lipid accumulation, cholesterol efflux rate, and AMPKα1, PPARγ, LXRα, and ABCA1 levels following drug intervention. Finally, changes in the downstream molecules were evaluated following the inhibition of AMPK by compound C or PPARγ silencing by small interfering RNA. RESULTS: TGDZF administration reduced aortic plaque area and lipid accumulation in aortic plaque and hepatocytes, and improved the serum lipid profiles of ApoE-/- mice. Further study revealed that its efficacy was accompanied by an increase in cholesterol efflux rate and the expression of PPARγ, LXRα, and ABCA1 mRNA and protein, as well as the promotion of AMPKα1 phosphorylation. Moreover, similar results were caused by the intervention of TGDZF-containing serum in vitro experiments. Inhibition of AMPK and PPARγ partially blocked the regulatory effect of TGDZF, respectively. CONCLUSIONS: TGDZF alleviated atherosclerosis and promoted cholesterol efflux from macrophages by activating the AMPK-PPARγ-LXRα-ABCA1 pathway.


Asunto(s)
Aterosclerosis , PPAR gamma , Animales , Ratones , PPAR gamma/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Colesterol/metabolismo , Receptores X del Hígado/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/prevención & control , Aterosclerosis/metabolismo , Células Espumosas , Apolipoproteínas E/genética , ARN Mensajero/metabolismo
13.
Inflamm Res ; 73(2): 157-174, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38183431

RESUMEN

OBJECTIVE: Cognitive dysfunction is a common comorbidity in patients with chronic pain. Activation of Liver X receptors (LXRs) plays a potential role in improving cognitive disorders in central nervous diseases. In this study, we investigated the role of LXRs in cognitive deficits induced by neuropathic pain. METHODS: We established the spared nerve injury (SNI) model to investigate pain-induced memory dysfunction. Pharmacological activation of LXRs with T0901317 or inhibition with GSK2033 was applied. PI3K inhibitor LY294002 was administered to explore the underlying mechanism of LXRs. Changes in neuroinflammation, microglia polarization, and synaptic plasticity were assessed using biochemical technologies. RESULTS: We found that SNI-induced cognitive impairment was associated with reduced LXRß expression, increased M1-phenotype microglia, decreased synaptic proteins, and inhibition of PI3K/AKT signaling pathway in the hippocampus. Activation of LXRs using T0901317 effectively alleviated SNI-induced cognitive impairment. Additionally, T0901317 promoted the polarization of microglia from M1 to M2, reduced pro-inflammatory cytokines, and upregulated synaptic proteins in the hippocampus. However, administration of GSK2033 or LY294002 abolished these protective effects of T0901317 in SNI mice. CONCLUSIONS: LXRs activation alleviates neuropathic pain-induced cognitive impairment by modulating microglia polarization, neuroinflammation, and synaptic plasticity, at least partly via activation of PI3K/AKT signaling in the hippocampus. LXRs may be promising targets for addressing pain-related cognitive deficits.


Asunto(s)
Bencenosulfonamidas , Disfunción Cognitiva , Fluorocarburos , Neuralgia , Humanos , Ratones , Animales , Receptores X del Hígado/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Microglía/metabolismo , Enfermedades Neuroinflamatorias , Neuralgia/tratamiento farmacológico , Disfunción Cognitiva/tratamiento farmacológico , Plasticidad Neuronal
14.
Chem Biol Interact ; 389: 110865, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38191086

RESUMEN

Non-alcoholic Fatty Liver Disease (NAFLD) is one of the common side effects of tamoxifen treatment for estrogen receptor-positive breast cancer, and is representative of disorders of energy metabolism. Fatty liver is induced after tamoxifen (TAM) inhibition of estrogen receptor activity, but the exact mechanism is not clear. This study investigated the effects and mechanisms of TAM-induced steatosis in the liver. The effects and mechanisms of TAM on hepatocyte lipid metabolism were assessed using C57BL/6 female mice and human hepatoma cells. TAM promoted fat accumulation in the liver by upregulation of Srebp-1c expression. Regarding the molecular mechanism, TAM promoted the recruitment of the auxiliary transcriptional activator, p300, and dissociated the auxiliary transcriptional repressor, nuclear receptor corepressor (NCOR), of the complexes, which led to enhancement of Srebp-1c transcription and an increase of triglyceride (TG) synthesis. Vitamin D (VD), a common fat-soluble vitamin, can decrease TAM-induced NAFLD by promoting p300 dissociation and NCOR recruitment. Tamoxifen promoted the recruitment and dissociation of co-transcription factors on the LXR/ER/RXR receptor complex, leading to a disorder of liver lipid metabolism. VD interfered with TAM-induced liver lipid metabolism disorders by reversing this process.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Femenino , Humanos , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptores X del Hígado/metabolismo , Tamoxifeno/farmacología , Vitamina D/farmacología , Receptores de Estrógenos/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Ratones Endogámicos C57BL , Hígado/metabolismo , Vitaminas/metabolismo , Vitaminas/farmacología
15.
Phytomedicine ; 123: 155192, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37951148

RESUMEN

BACKGROUND: Tetranucleotide repeat domain protein 39B (TTC39B) was found to combine with ubiquitin ligase E3, and promote the ubiquitination modification of liver X receptor (LXR), which led to the inhibition of reverse cholesterol transport and development of atherosclerosis. QiShenYiQi pill (QSYQ) is a modern Chinese patent drug for treating ischemic cardiovascular diseases, the underlying mechanism is found to promote the expression of LXR-α/ ATP-binding cassette transporter G5 (ABCG5) in the liver of atherosclerotic mice. PURPOSE: The aim of this study is to investigate the effect of QSYQ on TTC39B-LXR mediated reverse cholesterol transport in atherosclerotic mice. STUDY DESIGN AND METHODS: Male apolipoprotein E gene knockout mice (7 weeks old) were fed with high-fat diet and treated with low dose of QSYQ (QSYQ-l, 0.3 g/kg·d), high dose of QSYQ (QSYQ-H, 1.2 g/kg·d) and LXR-α agonist (LXR-A, GW3965 10 mg/kg·d) for 8 weeks. C57BL/6 J mice were fed with normal diet and used as negative control. Oil red O staining, HE staining, ELISA, RNA sequencing, western blot, immunohistochemistry, RT-PCR, cell culture and RNA interference were performed to analyze the effect of QSYQ on atherosclerosis. RESULTS: HE staining showed that QSYQ reduced the atherosclerotic lesion significantly when compared to the control group. ELISA measurement showed that QSYQ decreased serum VLDL and increased serum ApoA1. Oil Red O staining showed that QSYQ reduced the lipid content of liver and protect liver function. Comparative transcriptome RNA-sequence of liver showed that DEGs after QSYQ treatment enriched in high-density lipoprotein particle, ubiquitin ligase complex, bile secretion, etc. Immunohistochemical staining and western blot proved that QSYQ increased the protein expression of hepatic SR-B1, LXR-α, LXR-ß, CYP7A1 and ABCG5. Targeted inhibiting Ttc39b gene in vitro further established that QSYQ inhibited the gene expression of Ttc39b, increased the protein expression of SR-B1, LXR-α/ß, CYP7A1 and ABCG5 in rat hepatocyte. CONCLUSION: Our results demonstrated the new anti-atherosclerotic mechanism of QSYQ by targeting TTC39B-LXR mediated reverse cholesterol transport in liver. QSYQ not only promoted reverse cholesterol transport, but also improved fatty liver and protected liver function.


Asunto(s)
Aterosclerosis , Compuestos Azo , Medicamentos Herbarios Chinos , Lipoproteínas , Masculino , Ratones , Ratas , Animales , Receptores X del Hígado/metabolismo , Colesterol/metabolismo , Receptores Nucleares Huérfanos/genética , Receptores Nucleares Huérfanos/metabolismo , Receptores Nucleares Huérfanos/uso terapéutico , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 5/metabolismo , Ratones Endogámicos C57BL , Hígado , Ratones Noqueados , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo
16.
Mol Neurobiol ; 61(1): 341-357, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37606719

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disease due to the degeneration of dopaminergic neurons (DNs) in the substantia nigra (SN). The liver X receptor (LXR) is involved in different neurodegenerative diseases. Therefore, the objective of the present review was to clarify the possible role of LXR in PD neuropathology. LXRs are the most common nuclear receptors of transcription factors that regulate cholesterol metabolism and have pleiotropic effects, including anti-inflammatory effects and reducing intracellular cholesterol accumulation. LXRs are highly expressed in the adult brain and act as endogenous sensors for intracellular cholesterol. LXRs have neuroprotective effects against the development of neuroinflammation in different neurodegenerative diseases by inhibiting the expression of pro-inflammatory cytokines. LXRs play an essential role in mitigating PD neuropathology by reducing the expression of inflammatory signaling pathways, neuroinflammation, oxidative stress, mitochondrial dysfunction, and enhancement of BDNF signaling.In conclusion, LXRs, through regulating brain cholesterol homeostasis, may be effectual in PD. Also, inhibition of node-like receptor pyrin 3 (NLRP3) inflammasome and nuclear factor kappa B (NF-κB) by LXRs could effectively prevent neuroinflammation in PD. Taken together, LXRs play a crucial role in PD neuropathology by inhibiting neuroinflammation and associated degeneration of DNs.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/patología , Enfermedades Neurodegenerativas/metabolismo , Receptores X del Hígado/metabolismo , Enfermedades Neuroinflamatorias , Encéfalo/metabolismo , Neuronas Dopaminérgicas/metabolismo , Colesterol/metabolismo
17.
Phytomedicine ; 123: 155227, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38128398

RESUMEN

BACKGROUND: Atherosclerosis (AS) is a progressive chronic disease. Currently, cardiovascular diseases (CVDs) caused by AS is responsible for the global increased mortality. Yanshanjiang as miao herb in Guizhou of China is the dried and ripe fruit of Fructus Alpinia zerumbet. Accumulated evidences have confirmed that Yanshanjiang could ameliorate CVDs, including AS. Nevertheless, its effect and mechanism on AS are still largely unknown. PURPOSE: To investigate the role of essential oil from Fructus Alpinia zerumbet (EOFAZ) on AS, and the potential mechanism. METHODS: A high-fat diet (HFD) ApoE-/- mice model of AS and a oxLDL-induced model of macrophage-derived foam cells (MFCs) were reproduced to investigate the pharmacological properties of EOFAZ on AS in vivo and foam cell formation in vitro, respectively. The underlying mechanisms of EOFAZ were investigated using Network pharmacology and molecular docking. EOFAZ effect on PPARγ protein stability was measured using a cellular thermal shift assay (CETSA). Pharmacological agonists and inhibitors and gene interventions were employed for clarifying EOFAZ's potential mechanism. RESULTS: EOFAZ attenuated AS progression in HFD ApoE-/- mice. This attenuation was manifested by the reduced aortic intima plaque development, increased collagen content in aortic plaques, notable improvement in lipid profiles, and decreased levels of inflammatory factors. Moreover, EOFAZ inhibited the formation of MFCs by enhancing cholesterol efflux through activiting the PPARγ-LXRα-ABCA1/G1 pathway. Interestingly, the pharmacological knockdown of PPARγ impaired the beneficial effects of EOFAZ on MFCs. Additionally, our results indicated that EOFAZ reduced the ubiquitination degradation of PPARγ, and the chemical composition of EOFAZ directly bound to the PPARγ protein, thereby increasing its stability. Finally, PPARγ knockdown mitigated the protective effects of EOFAZ on AS in HFD ApoE-/- mice. CONCLUSION: These findings represent the first confirmation of EOFAZ's in vivo anti-atherosclerotic effects in ApoE-/- mice. Mechanistically, its chemical constituents can directly bind to PPARγ protein, enhancing its stability, while reducing PPARγ ubiquitination degradation, thereby inhibiting foam cell formation via activation of the PPARγ-LXRα-ABCA1/G1 pathway. Simultaneously, EOFAZ could ameliorates blood lipid metabolism and inflammatory microenvironment, thus synergistically exerting its anti-atherosclerotic effects.


Asunto(s)
Alpinia , Aterosclerosis , Aceites Volátiles , Placa Aterosclerótica , Animales , Ratones , PPAR gamma/metabolismo , Aceites Volátiles/farmacología , Frutas , Simulación del Acoplamiento Molecular , Transducción de Señal , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Placa Aterosclerótica/tratamiento farmacológico , Apolipoproteínas E , Transportador 1 de Casete de Unión a ATP/metabolismo , Receptores X del Hígado/metabolismo
18.
J Physiol Pharmacol ; 74(5)2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38085517

RESUMEN

The liver is the focus of research on the effects of estrogen on cholesterol metabolism. Few studies have investigated the effects of estrogen on macrophages despite the significance of cells in atherosclerosis. The purpose of this study is to examine the effect of estrogen on macrophage cholesterol efflux. Macrophage cholesterol efflux, oil red O staining, RT-qPCR, Western blotting analyses were used to determine cholesterol metabolize and the expressions of adenosine triphosphate (ATP)-binding cassette transporter G1 (ABCG1) and ATP-binding cassette transporter A1 (ABCA1) in J774A.1 cells, and the effect of these treatments was compared to without adding 17ß-estradiol (E2). Gain and loss of estrogen receptor alpha (ERα), liver X receptor α (LXRα) were conducted to study interactions between E2, ERα, LXRα and ABCA. Finally, in mice, we validate the relationship between ERα and ABCA1. E2 increases cholesterol efflux from macrophages and decreases the formation of lipid droplets and positively regulates the expression of ABCA1. This suggests that estrogen receptors (ERs) directly regulate ABCA1 translation. We suppressed ERα, which decreased the mRNA and protein expression of ABCA1. At the mRNA level, E2 treatment could partially counteract these phenomena, but not at the protein level. ABCA1 expression decreased after LXRα was inhibited. This suggests that ABCA1 translation is directly regulated by ERα. In the ovariectomized mouse model of ABCA1 protein expression was significantly reduced in the peritoneal macrophages of the ovariectomy (OVX) group. ABCA1 protein expression was greater in the E2+OVX group than in the OVX group. E2 contributes to the positive regulation of ABCA1 expression and promotes cholesterol efflux in macrophages by binding to ERα. The effect is independent of ABCA1 transcription regulation by LXRα.


Asunto(s)
Receptor alfa de Estrógeno , Receptores de Estrógenos , Femenino , Animales , Ratones , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Receptores de Estrógenos/metabolismo , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Macrófagos , Colesterol/metabolismo , Receptores X del Hígado/metabolismo , Estradiol/farmacología , Estrógenos/metabolismo , ARN Mensajero/metabolismo
19.
BMC Complement Med Ther ; 23(1): 445, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38066464

RESUMEN

INTRODUCTION: Liver X Receptor (LXR) agonists could attenuate the development of atherosclerosis but bring excess lipid accumulation in the liver. Danlou Recipe was believed to be a benefit for improving the lipid profile. Thus, it is unclear whether Danlou Recipe could attenuate hyperlipidemia without excess lipid accumulated in the liver of mice. This study aimed to clarify if Danlou Recipe could alleviate the progression of hyperlipidemia in mice without extra lipids accumulated in the liver. METHODS: Male murine macrophage RAW264.7 cells and murine peritoneal macrophages were used for the in vitro experiments. Cellular cholesterol efflux was determined using the fluorescent cholesterol labeling method. Those genes involved in lipid metabolism were evaluated by qRT-PCR and western blotting respectively. In vivo, a mouse model of hyperlipidemia induced by P407 was used to figure out the effect of Danlou Recipe on reverse cholesterol transport (RCT) and hyperlipidemia. Ethanol extract of Danlou tablet (EEDL) was prepared by extracting the whole powder of Danlou Prescription from ethanol, and the chemical composition was analyzed by ultra-performance liquid chromatography (UPLC). RESULTS: EEDL inhibits the formation of RAW264.7 macrophage-derived foam cells, and promotes ABCA1/apoA1 conducted cholesterol efflux in RAW264.7 macrophages and mouse peritoneal macrophages. In the P407-induced hyperlipidemia mouse model, oral administration of EEDL can promote RCT in vivo and improve fatty liver induced by a high-fat diet. Consistent with the findings in vitro, EEDL promotes RCT by upregulating the LXR activities. CONCLUSION: Our results demonstrate that EEDL has the potential for targeting RCT/LXR in the treatment of lipid metabolism disorders to be developed as a safe and effective therapy.


Asunto(s)
Hiperlipidemias , Macrófagos , Masculino , Ratones , Animales , Colesterol/metabolismo , Receptores X del Hígado/metabolismo , Hiperlipidemias/tratamiento farmacológico , Etanol
20.
Aging (Albany NY) ; 15(24): 14791-14802, 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38157252

RESUMEN

Lipid accumulation in macrophages plays an important role in atherosclerosis and is the major cause of atherosclerotic cardiovascular disease. Reducing lipid accumulation in macrophages is an effective therapeutic target for atherosclerosis. Insulin-like growth factor 1 (IGF-1) exerts the anti-atherosclerotic effects by inhibiting lipid accumulation in macrophages. Furthermore, almost all circulating IGF-1 combines with IGF binding proteins (IGFBPs) to activate or inhibit the IGF signaling. However, the mechanism of IGFBPs in macrophage lipid accumulation is still unknown. GEO database analysis showed that among IGFBPS family members, IGFBPL1 has the largest expression change in unstable plaque. We found that IGFBPL1 was decreased in lipid-laden THP-1 macrophages. Through oil red O staining, NBD-cholesterol efflux, liver X receptor α (LXRα) transcription factor and IGR-1 receptor blocking experiments, our results showed that IGFBPL1 inhibits lipid accumulation in THP-1 macrophages through promoting ABCG1-meditated cholesterol efflux, and IGFBPL1 regulates ABCG1 expression and macrophage lipid metabolism through IGF-1R/LXRα pathway. Our results provide a theoretical basis of IGFBPL1 in the alternative or adjunct treatment options for atherosclerosis by reducing lipid accumulation in macrophages.


Asunto(s)
Aterosclerosis , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina , Metabolismo de los Lípidos , Placa Aterosclerótica , Humanos , Aterosclerosis/metabolismo , Transportador 1 de Casete de Unión a ATP , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/genética , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/uso terapéutico , Factor I del Crecimiento Similar a la Insulina/metabolismo , Receptores X del Hígado/metabolismo , Macrófagos/metabolismo , Placa Aterosclerótica/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Receptor IGF Tipo 1/metabolismo , Metabolismo de los Lípidos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...